Chaos in quadratic gravity

نویسندگان

چکیده

While recent gravitational wave observations by LIGO and Virgo allow for tests of general relativity in the extreme gravity regime, these are still blind to a large swath phenomena outside instruments' sensitivity curves. Future gravitational-wave detectors, such as LISA, will enable probes longer-duration lower-frequency events. In particular, LISA characterization non-linear dynamics mass-ratio inspirals, when small compact object falls into supermassive black hole. this paper, we study motion test particles around spinning holes two quadratic theories: scalar Gauss-Bonnet dynamical Chern-Simons gravity. We show that geodesic trajectories rotating theories likely not have fourth constant motion. Poincar\'e sections orbital phase space present chaotic features affect inspiral objects theories. Nevertheless, characteristic size is tiny their location parameter very close event horizon Therefore, detection with challenging, at best.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadratic metric-affine gravity

We consider spacetime to be a connected real 4-manifold equipped with a Lorentzian metric and an affine connection. The 10 independent components of the (symmetric) metric tensor and the 64 connection coefficients are the unknowns of our theory. We introduce an action which is quadratic in curvature and study the resulting system of Euler–Lagrange equations. In the first part of the paper we lo...

متن کامل

biaccessibility in quadratic julia sets

در این رساله برای چندجمله ای های درجه ی دوم با مجموعه ی ژولیای همبند موضعی; ثابت خواهیم کرد: اندازه برولین مجموعه نقاط از دو سو دست یافتنی در چندجمله ای های درجه دو برابر با صفر است مگر چندجمله ای چبی شف که برابر با یک است. و برای چندجمله ای های درجه دوم با نقاط ثابت خنثی غیر گویا ثابت خواهیم کرد: 1)هر نقطه ی از دو سو دست یافتنی در حالت زیگل نهایتا به نقطه ی بحرانی و در حالت کرمر به نقطه ث...

Oscillations and Chaos in Simple Quadratic Systems

This paper is concerned with the study of third order quadratic and autonomous systems and the interest is oriented to the stable periodic oscillations. From the “jerk” equation model, the classes of minimal complexity presenting a Hopf bifurcation are derived and their local characterization is carried out by means of a suitable harmonic balance technique. Other possible system reductions pres...

متن کامل

Gravity, Chaos and Time Machines

2+1 gravity for spacetimes with topology R × T has been much studied. We add a description of how to extend these spacetimes across a Cauchy horizon into a region where the torus becomes Lorentzian. The result is a one parameter family of tori given by a geodesic in the ”Teichmüller space” of Lorentzian tori. We describe this in detail. We also point out that if the modular group is regarded as...

متن کامل

Stable Isotropic Cosmological Singularities in Quadratic Gravity

We show that, in quadratic lagrangian theories of gravity, isotropic cosmological singularities are stable to the presence of small scalar, vector and tensor inhomogeneities. Unlike in general relativity, a particular exact isotropic solution is shown to be the stable attractor on approach to the initial cosmological singularity. This solution is also known to act as an attractor in Bianchi uni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2022

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physrevd.106.024040